Source code for penaltyblog.models.dixon_coles

import warnings

import numpy as np
from numpy.typing import NDArray
from scipy.optimize import minimize

# from .probabilities import compute_dixon_coles_probabilities
from penaltyblog.models.base_model import BaseGoalsModel
from penaltyblog.models.custom_types import (
    GoalInput,
    ParamsOutput,
    TeamInput,
    WeightInput,
)
from penaltyblog.models.football_probability_grid import (
    FootballProbabilityGrid,
)

from .gradients import dixon_coles_gradient
from .loss import dixon_coles_loss_function
from .probabilities import compute_dixon_coles_probabilities


[docs] class DixonColesGoalModel(BaseGoalsModel): """ Dixon and Coles adjusted Poisson model for predicting outcomes of football (soccer) matches Methods ------- fit() fits a Dixon and Coles adjusted Poisson model to the data to calculate the team strengths. Must be called before the model can be used to predict game outcomes predict(home_team, away_team, max_goals=15) predict the outcome of a football (soccer) game between the home_team and away_team get_params() Returns the fitted parameters from the model """
[docs] def __init__( self, goals_home: GoalInput, goals_away: GoalInput, teams_home: TeamInput, teams_away: TeamInput, weights: WeightInput = None, ): """ Dixon and Coles adjusted Poisson model for predicting outcomes of football (soccer) matches Parameters ---------- goals_home : array_like The number of goals scored by the home team in each match goals_away : array_like The number of goals scored by the away team in each match teams_home : array_like The name of the home team in each match teams_away : array_like The name of the away team in each match weights : array_like, optional The weight of each match, by default None """ super().__init__(goals_home, goals_away, teams_home, teams_away, weights) self._params = np.concatenate( ( [1] * self.n_teams, [-1] * self.n_teams, [0.25], # home advantage [-0.1], # rho ) )
def __repr__(self) -> str: lines = ["Module: Penaltyblog", "", "Model: Dixon and Coles", ""] if not self.fitted: lines.append("Status: Model not fitted") return "\n".join(lines) assert self.aic is not None assert self.loglikelihood is not None assert self.n_params is not None lines.extend( [ f"Number of parameters: {self.n_params}", f"Log Likelihood: {round(self.loglikelihood, 3)}", f"AIC: {round(self.aic, 3)}", "", "{0: <20} {1:<20} {2:<20}".format("Team", "Attack", "Defence"), "-" * 60, ] ) for idx, team in enumerate(self.teams): lines.append( "{0: <20} {1:<20} {2:<20}".format( team, round(self._params[idx], 3), round(self._params[idx + self.n_teams], 3), ) ) lines.extend( [ "-" * 60, f"Home Advantage: {round(self._params[-2], 3)}", f"Rho: {round(self._params[-1], 3)}", ] ) return "\n".join(lines) def __str__(self): return self.__repr__() def _gradient(self, params): attack = np.asarray(params[: self.n_teams], dtype=np.double, order="C") defence = np.asarray( params[self.n_teams : 2 * self.n_teams], dtype=np.double, order="C" ) hfa = params[-2] # Home field advantage rho = params[-1] # Dixon-Coles rho adjustment return dixon_coles_gradient( attack, defence, hfa, rho, self.home_idx, self.away_idx, self.goals_home, self.goals_away, self.weights, ) def _loss_function(self, params: NDArray) -> float: """ Internal method, not to called directly by the user """ # Get params attack = np.asarray(params[: self.n_teams], dtype=np.double, order="C") defence = np.asarray( params[self.n_teams : 2 * self.n_teams], dtype=np.double, order="C" ) hfa = params[-2] rho = params[-1] return dixon_coles_loss_function( self.goals_home, self.goals_away, self.weights, self.home_idx, self.away_idx, attack, defence, hfa, rho, )
[docs] def fit(self): """ Fits the model to the data and calculates the team strengths, home advantage and intercept. Must be called before `predict` can be used """ options = { "maxiter": 1000, "disp": False, } constraints = [ { "type": "eq", "fun": lambda x: sum(x[: self.n_teams]) - self.n_teams, } ] bounds = [(-3, 3)] * self.n_teams * 2 + [(0, 2), (-2, 2)] with warnings.catch_warnings(): warnings.filterwarnings("ignore") self._res = minimize( self._loss_function, self._params, constraints=constraints, bounds=bounds, options=options, # jac=self._gradient, ) if not self._res.success: raise ValueError(f"Optimization failed with message: {self._res.message}") self._params = self._res["x"] self.n_params = len(self._params) self.loglikelihood = self._res["fun"] * -1 self.aic = -2 * (self.loglikelihood) + 2 * self.n_params self.fitted = True
[docs] def predict( self, home_team: str, away_team: str, max_goals: int = 15 ) -> FootballProbabilityGrid: """ Predicts the probability of each scoreline for a given home and away team Parameters ---------- home_team : str The name of the home team away_team : str The name of the away team max_goals : int, optional The maximum number of goals to consider, by default 15 Returns ------- FootballProbabilityGrid A FootballProbabilityGrid object containing the probabilities of each scoreline """ if not self.fitted: raise ValueError( "Model's parameters have not been fit yet. Please call `fit()` first." ) if home_team not in self.teams or away_team not in self.teams: raise ValueError("Both teams must have been in the training data.") home_idx = self.team_to_idx[home_team] away_idx = self.team_to_idx[away_team] home_attack = self._params[home_idx] away_attack = self._params[away_idx] home_defense = self._params[home_idx + self.n_teams] away_defense = self._params[away_idx + self.n_teams] home_advantage = self._params[-2] rho = self._params[-1] # Preallocate the score matrix as a flattened array. score_matrix = np.empty(max_goals * max_goals, dtype=np.float64) # Allocate one-element arrays for lambda values. lambda_home = np.empty(1, dtype=np.float64) lambda_away = np.empty(1, dtype=np.float64) compute_dixon_coles_probabilities( float(home_attack), float(away_attack), float(home_defense), float(away_defense), float(home_advantage), float(rho), int(max_goals), score_matrix, lambda_home, lambda_away, ) score_matrix.shape = (max_goals, max_goals) return FootballProbabilityGrid(score_matrix, lambda_home, lambda_away)
[docs] def get_params(self) -> ParamsOutput: """ Returns the model's fitted parameters as a dictionary Returns ------- dict A dict containing the model's parameters """ if not self.fitted: raise ValueError( "Model's parameters have not been fit yet, please call the `fit()` function first" ) assert self.n_params is not None assert self._res is not None params = dict( zip( ["attack_" + team for team in self.teams] + ["defence_" + team for team in self.teams] + ["home_advantage", "rho"], self._res["x"], ) ) return params
@property def params(self) -> dict: """ Property to retrieve the fitted model parameters. Same as `get_params()`, but allows attribute-like access. Returns ------- dict A dictionary containing attack, defense, home advantage, and correlation parameters. Raises ------ ValueError If the model has not been fitted yet. """ return self.get_params()